

2SD300C17描述与应用手册

双通道、高质量、低成本的SCALE™-2驱动核

摘要

SCALE™-2 双 通 道 驱 动 核 2SD300C17 可 替 代 Infineon 的 2ED300C17-S和 2ED300C17-ST。 该 驱 动 器 与 2ED300C17-S/2ED300C17-ST的管脚和功能完全兼容,适用于要求高可靠性的应用场合。

CONCEPT高度集成的SCALE-2芯片组,所使用的元件比2ED300C17-S/2ED300C17-ST减少63%。这一优势可显著提高可靠性(功能和MTBF),同时降低成本。

图1 2SD300C17驱动核

www.IGBT-Driver.com 第1页

目录

驱动器概述	4
原方接口的推荐电路	8
原方接口电路描述	9
概述	9
VDC 端子	9
VDD 端子	9
Mod(模式选择)	9
INA、INB(驱动输入端,例如 PWM 信号)	10
SOA、SOB(状态输出)	10
CA 和 CB(在半桥模式下调整死区时间的输入端)	11
副方接口的推荐电路	12
副方接口电路描述	12
概述	12
DC/DC 输出(Vx+、Vx-)和 COMx 端子	13
参考端子(RCx)	13
集电极电位检测端子(VCEx)	13
门极端子 Gate x	14
检测输入端(Sense x)	14
外部故障输入端 E.x	14
2SD300C17 SCALE-2 驱动器的工作原理	15
电源及电气隔离	15
电源监控	15
Vce 检测/短路保护	15
设置阻断时间	16
参考文献	16
信息源:SCALE-2 驱动器数据手册	17
特殊要求:定制 SCALE-2 驱动器	17

2SD300C17

描述与应用手册

技术支持	17
质量	17
法律免责声明	17
订购信息	18
其他产品的信息	18
生产厂商	18

驱动器概述

2SD300C17装备了CONCEPT公司最新的SCALE-2芯片组/1/。SCALE-2芯片组是一套专用集成电路(ASIC),它包含智能门极驱动器所需的大部分功能。SCALE-2驱动器芯片组是在成熟的SCALE芯片组技术/2/基础上的进一步开发。

2SD300C17的目标是中等功率及大功率IGBT应用,例如风力发电和太阳能逆变器、通用变频器以及牵引(包括IGBT模块的并联)。2SD300C17包含完整的双通道IGBT驱动核,具备隔离的DC/DC电源、短路保护、有源钳位、软关断和电源电压监控功能。

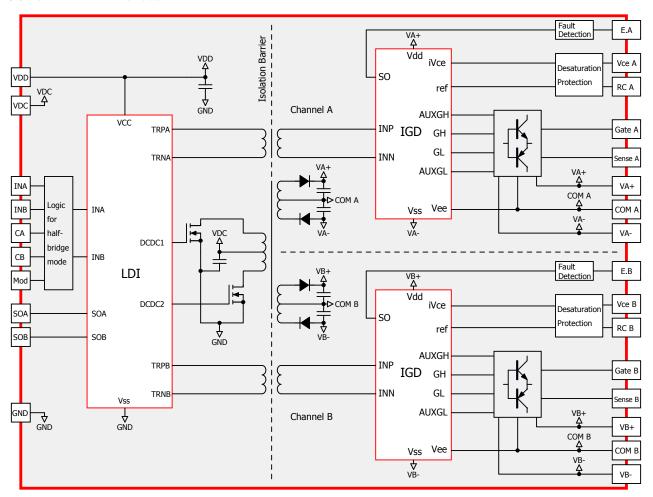


图2 2SD300C17内部框图

www.IGBT-Driver.com 第 4 页

机械尺寸

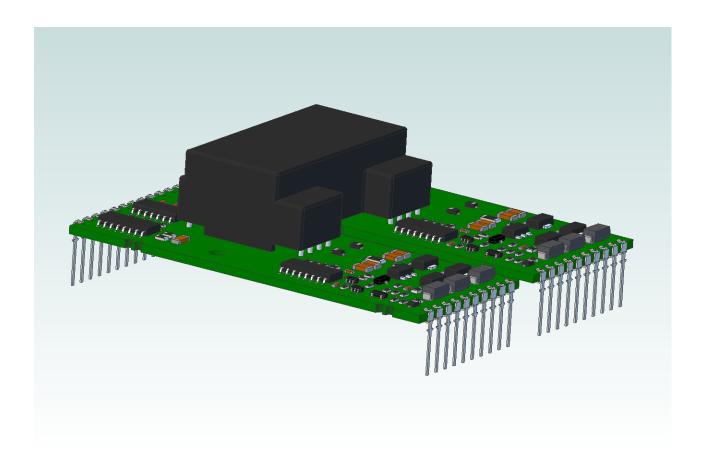


图3 2SD300C17的3D图

www.IGBT-Driver.com 第 5 页

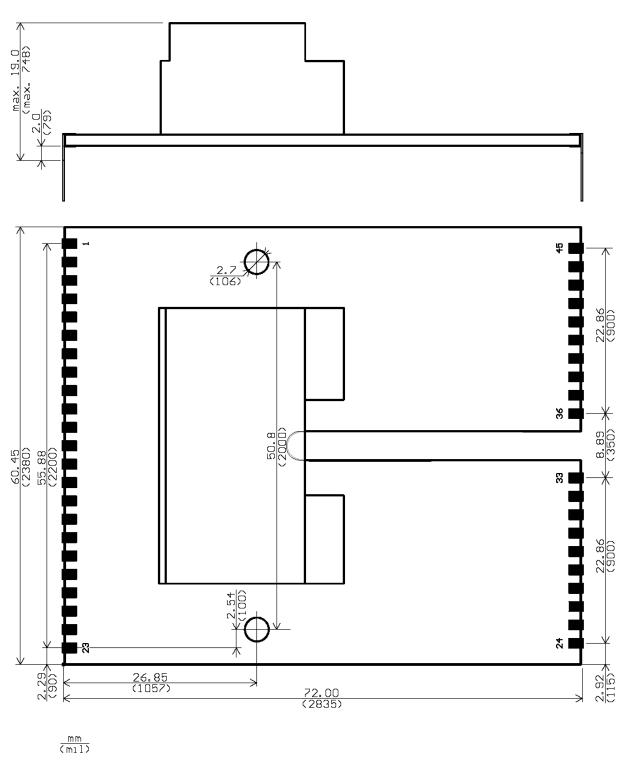


图4 机械图 (俯视图)

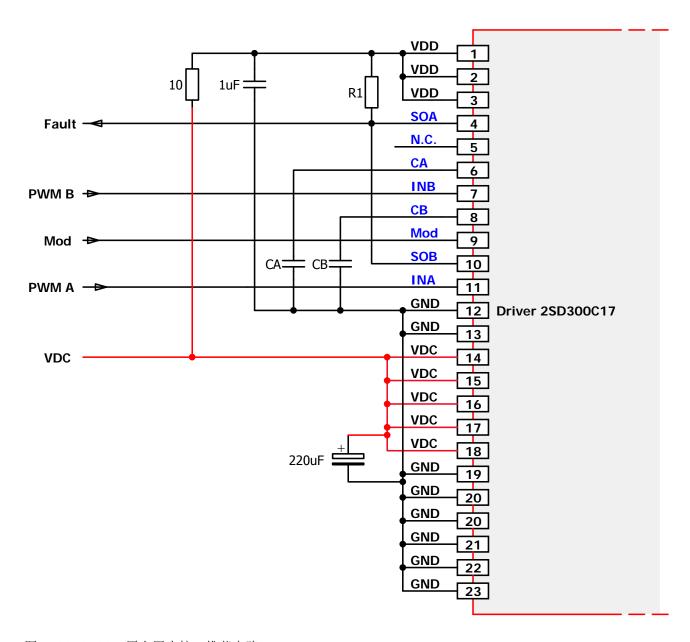
原方及副方的管脚的间距为2.54mm (100mil)。

板子的外形尺寸为60.5mm x 72mm。从管脚根部至驱动器最顶端测得的整体高度最大为19mm(详见上图所示)。

推荐的焊盘直径: Ø 2mm (79mil) 推荐的焊孔直径: Ø 1mm (39mil)

www.IGBT-Driver.com 第6页

管脚定义


原方 副方 管脚 管脚 名称 功能 名称 功能 1 45 门极A 通道A门极 **VDD** 用于原方电子元件的+15V电源 44 2 **VDD** 用于原方电子元件的+15V电源 门极A 通道A门极 43 3 **VDD** 用于原方电子元件的+15V电源 COM A 通道A发射极 42 4 通道A状态输出 COM A 通道A发射极 SOA 5 N.C. 未连接 41 VA+ 通道A +16V DC/DC输出 通道A死区时间 40 VA-通道A -16V DC/DC输出 6 CA 7 INB 通道B信号输入 39 Sense A 软关断/有源钳位输入 8 通道B死区时间 38 RC A 通道A参考RC网络 CB 9 37 Mod 模式选择 Vce A 通道A集电极电位检测端子 10 **SOB** 通道B状态输出 36 E.A 通道A外部故障输入 11 INA 通道A信号输入 35 空脚 34 空脚 12 **GND** 接地端 33 13 **GND** 接地端 门极B 通道B门极 14 **VDC** DC/DC变换器供电电源 32 门极B 通道B门极 15 **VDC** DC/DC变换器供电电源 31 COM B 通道B发射极 16 **VDC** 30 COM B 通道B发射极 DC/DC变换器供电电源 29 17 通道B +16V DC/DC输出 **VDC** DC/DC变换器供电电源 VB+ 18 **VDC** DC/DC变换器供电电源 28 VB-通道B-16V DC/DC输出 19 **GND** 接地端 27 Sense B 软关断/有源钳位输入 20 **GND** 接地端 26 RC B 通道B参考RC网络 25 21 **GND** 接地端 Vce B 通道B集电极电位检测端子 22 **GND** 接地端 24 E.B 通道B外部故障输入 23 接地端 **GND**

注: "空脚"所表示的管脚实际上是不存在的

www.IGBT-Driver.com 第7页

原方接口的推荐电路

图5 2SD300C17原方用户接口推荐电路

所有接地管脚必须连接在一起,且连接线寄生电感要低。强烈建议使用公用接地层或较宽的PCB连接线。两个接地管脚之间的连接距离必须保持最小。

www.IGBT-Driver.com 第8页

原方接口电路描述

概述

驱动器2SD300C17的原方接口电路非常简单且容易使用。

驱动器原方配有一个23针接口端子:

- 8 x 电源端子
- 2 x 驱动信号输入端
- 2x状态输出端(故障信号反馈)
- 1x模式选择端(半桥模式/直接模式)
- 2x设置死区时间的输入端(半桥模式)
- 1 x 未连接(N.C.)

所有输入和输出端都具有静电防护功能。并且,所有的数字信号输入端都有施密特特性。

VDC端子

驱动器在接口处有5个VDC端子,用于向DC-DC电源供电。应向VDC提供稳定的+15V电源。

建议在VDC与GND之间使用一个220µF的支撑电容。

VDD端子

该驱动器在接口处有3个VDD端子,用于向原方电子元件提供15V电压。

建议通过一个 10Ω 电阻将VDD端子连接到VDC。应在VDD与GND之间放置一个额外的 1μ F支撑电容。

也可以直接将VDC和VDD连在一起,而不使用10Ω电阻。

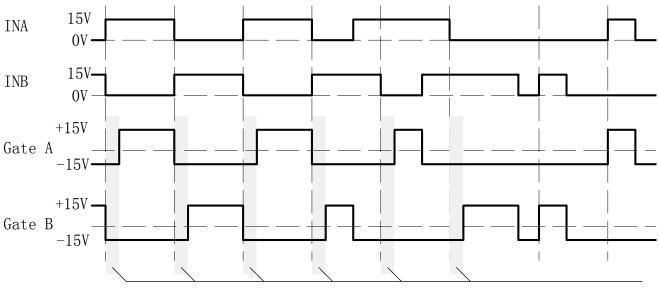
Mod(模式选择)

通过Mod输入端可以选择工作模式。

直接模式

如果Mod输入端连接到GND,则选择了直接模式。在这种模式下,两个通道之间相互独立,互不影响。输入INA直接影响通道A,而输入INB影响通道B。输入端(INA或INB)的高电平总是开通对应的IGBT。只有当控制电路产生了足够的死区时间,可使每个IGBT都安全接收其各自的驱动信号时,才能选择此模式。

注意: 半桥的两个开关管同时导通或导通时间重叠会导致直流母线短路。


www.IGBT-Driver.com 第 9 页

半桥模式

如果Mod输入端连接到VDD,则选择了半桥模式。在这种模式下,输入端INA影响通道A,而INB影响通道B。但是,在同一时间只有一个通道可以开通,并且会在两个通道之间产生一个确定的死区时间(互锁时间)(参见图 6)。可以使用输入管脚CA和CB来调整两个通道之间的死区时间(参见第11页的"CA和CB(在半桥模式下调整死区时间的输入端)")。如果两个信号INA/INB同时为高,则两个门极信号将都为低(15V)。

下面图6显示了驱动器在半桥模式下的行为。

Dead time (both channels OFF)

图6 半桥模式中的信号

INA、INB(驱动输入端,例如PWM信号)

INA和INB通常是驱动输入端,但是它们的功能取决于Mod输入端(见上文)。

INA和INB应该采用15V逻辑电平信号。

不应该向驱动器输入端施加小于1.5us的脉冲。小于1.5us的脉冲有可能会触发驱动器的软关断功能。

SOA、SOB(状态输出)

输出端SOx为晶体管漏极开路形式。当在通道"x"中检测到故障时,状态输出SOx端被拉到低电平(连接到GND)。 否则,输出端为高阻抗。

两个SOx输出在驱动器内部未连接到一起。它们可以连接在一起,以提供所需的公共故障信号(例如,同一相)。 在故障状态下,流过SOx的电流值不能超过数据手册/3/中规定的数值。

www.IGBT-Driver.com 第 10 页

如何处理状态信息

- a) 当驱动器副方发生故障时(例如IGBT模块短路或副方电源欠压),故障信号会立即送到对应的SOx输出端。在经过阻断时间Tb后,相应的SOx输出端会自动复位(恢复到高阻抗状态)(请参阅相关的数据手册以了解时间参数/3/)。
- b) 原方电源欠压时,两个SOx输出端都会报错。当原方电源欠压消失后,两个SOx输出端会自动复位(恢复到高阻抗状态)(请参阅相关的数据手册以了解时间参数/3/)。

请注意,驱动器上未提供外部复位输入端。在阻断时间结束后,驱动器将自动复位。

CA和CB(在半桥模式下调整死区时间的输入端)

CA和CB端子用于在半桥模式下,设定通道A和通道B之间所需的死区时间。可以使用位于管脚CA、GND和CB、GND之间的电容(参见图5)来设定死区时间。

表1所示为死区时间与CA和CB的电容之间的函数关系:

CA和CB的电容	死区时间
0pF	1.3µs
47pF	1.7µs
100pF	2.1µs
220pF	3.0µs
330pF	3.8µs
470pF	4.8µs
1nF	8.8µs

表1 半桥模式下所产生的死区时间与CA和CB的函数关系

在直接模式下,建议在CA、GND和CB、GND之间各连接一个470pF的电容。CA或CB不得连接到任何外部电位(如GND或VDD)。

www.IGBT-Driver.com 第 11 页

副方接口的推荐电路

图7所示为驱动器副方接口的推荐电路(通道A)。通道B可以使用同样的电路(未显示)。

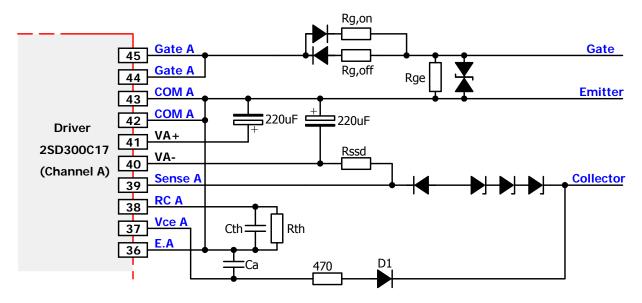


图7 推荐的2SD300C17接口电路(仅通道A,副方)

副方接口电路描述

概述

驱动器每个副方都配有一个10针接口端子(x代表A或B):

- 2 x DC/DC输出端子(Vx+和Vx-)
- 2 x 发射极端子VE
- 1 x 参考端子RCx (用于过流或短路保护)
- 1 x 集电极电位检测端子VCEx
- 2 x 门极端子Gate x
- 1 x 有源钳位和/或软关断的检测端子Sense x
- 1 x 外部故障输入端E.x

所有输入和输出端都具有静电防护功能。

www.IGBT-Driver.com 第 12 页

DC/DC输出(Vx+、Vx-)和COMx端子

驱动器在DC/DC电源的副方配有支撑电容(数值请参考数据手册/3/)。建议使用额外的220μF外部支撑电容,以减小由高脉冲电流导致的动态电压降。

支撑电容必须放置在Vx+和COMx之间以及COMx和Vx-之间(参见图7)。这两个电容必须尽可能靠近驱动器端子引脚处,以使电感最小。应使用具有高纹波电流能力的电容。

参考端子(RCx)

可通过在参考端子RCx与COMx之间连接一个电阻Rth,,以设置短路和/或过流保护的阈值电压。而且,使用一个动态参考而不是静态参考,来检查导通时IGBT的集电极-发射极电压。动态参考的时间常数可以通过连接在RCx和COMx之间的电容Cth来设置。这样可以在IGBT短路时对短路持续时间进行调整。

表2所示为在不同的Rth和Cth值情况下,根据IEC 60747-9所确定的静态参考阈值及短路持续时间(短路类型I)。 短路持续时间的测量条件如下:

- IGBT模块: Infineon的FF1000R17IE4
- Rg,on=1.2 Ω \pm Rg,off=1.8 Ω
- Rssd=10kΩ, Ca=1nF(参见图7)
- 直流母线电压: 1000V

电阻Rth	阈值	短路持续时间				
р	関阻	Cth=0pF	Cth=100pF	Cth=220pF	Cth=470pF	Cth=1nF
2kΩ	1.9V	2µs	2.1µs	2.3µs	2.7µs	3.6µs
5.4kΩ	3.9V	2.2µs	2.6µs	3.1µs	3.9µs	5.6µs
12kΩ	5.8V	2.5µs	3.5µs	4.2µs	5.5µs	7.6µs
32kΩ	7.8V	3.7µs	4.9µs	5.9µs	7.4µs	10µs
70kΩ	8.8V	5.1µs	6µs	7µs	8.6 µs	11.7µs

表2 过流和/或短路保护的动态阈值电压

请注意,短路持续时间取决于所使用的IGBT模块以及门极电阻。因此,建议在最终应用中对其进行测量。短路 持续时间不能超过IGBT模块数据手册中规定的最大值。

集电极电位检测端子(VCEx)

2SD300C17驱动器具有动态集电极电位检测功能。集电极检测端子必须接到IGBT的集电极(如图7所示),用于检测IGBT过流或者短路。如需关于功能的详细信息,请参阅第15页的"Vce检测/短路保护"。

www.IGBT-Driver.com 第 13 页

门极端子Gate x

通过这些端子可将开通和关断门极电阻连接到功率半导体的门极。请参阅驱动器数据手册/3/以了解所用门极电阻的限制值。

IGBT的辅助发射极必须直接连接到驱动器的COMx端子。

在Gate x和COMx之间连接一个最大值为10kΩ的电阻Rge,即使在驱动器掉电的情况下,这个电阻也可在IGBT门极和发射极之间提供一个低阻抗回路。此外,门极钳位应通过Gate x与COMx之间的齐纳二极管实现。

但是请注意,在半桥电路中,建议不要在驱动器供电电压较低的情况下操作IGBT,否则,过高的Vce变化率可导致IGBT出现误导通。

检测输入端(Sense x)

Sense x输入端可用于:

- 调节软关断行为
- 触发有源钳位。

这两种技术都可以在过流和/或短路关断情况下为IGBT提供集电极-发射极过压保护。请注意,软关断不会提供 100%的关断过压保护。如果输入端INx上所施加的脉冲持续时间小于驱动器响应时间(介于门极-发射极开通与 短路检测之间的时间),驱动器将关断短路,而不启用软关断功能。在这种情况下,有源钳位可用来限制关断过压。

推荐的典型值为 R_{ssd} =10k Ω 。如有必要,可通过修改该值来调整驱动器的软关断行为。

有源钳位功能可以通过从集电极到Sense x输入端的反馈信号来实现,如图7所示。推荐使用下列瞬态电压抑制二极管(TVS):

- 1x440V TVS (或2x220V TVS),用于600V的IGBT,直流母线电压最高为400V
- 2x440V TVS(或4x220V TVS),用于1200V的IGBT,直流母线电压最高为800V
- 3x440V TVS(或6x220V TVS),用于1700V的IGBT,直流母线电压最高为1200V

外部故障输入端E.x

2SD300C17在每个驱动器通道中都配有一个外部故障输入端,这样可以在对应的通道中产生一个故障信号。外部故障的处理方式与过流/短路或电源欠压故障相同。

如果不使用外部故障输入端E.x,则必须将其连接至COMx。

如果已使用,则必须满足以下条件以确保驱动器正常工作:

- E.x的电压上升率应高于0.1V/µs
- 施加至E.x的脉冲宽度必须大于1µs
- 只要一个通道发生故障(SOx输出端拉低),就必须关断另一个通道(并非由驱动器来关断)
- 两个通道之间的死区时间必须大于2μs加上主系统的响应时间(从驱动器的故障反馈至SOx到另一个通道 收到关断指令之间的时间)

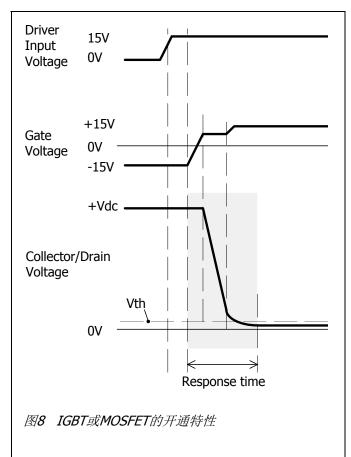
www.IGBT-Driver.com 第 14 页

2SD300C17 SCALE-2驱动器的工作原理

电源及电气隔离

这款驱动器配有DC/DC电源,可实现电源和门极驱动电路的电气隔离。所有的变压器(包括DC/DC和信号变压器)都符合EN 50178的安全隔离标准,原方与任何一个副方都可达到Ⅱ级防护等级。

请注意,驱动器需要稳定的电源电压。


电源监控

驱动器的原方及两个副方驱动器通道都有本地欠压检测电路。

在原方电源发生欠压时,两个IGBT都在负门极电压的驱动下保持关断状态(两个通道全都阻断),故障信号被同时传送到SOA和SOB输出端,直到该故障消失。

在副方电源发生欠压时,对应的**IGBT**将在负门极电压的驱动下保持关断状态(驱动器对应通道被封锁),故障信号被同时传送到对应的**SOx**输出端。在阻断时间结束后,该**SOx**输出端会自动复位(恢复到高阻抗状态)。

Vce检测/短路保护

2SD300C17驱动器配有一个Vce检测电路。推荐的外部电路如图7所示。电阻和电容(图7中的Rth和Cth)用于设置关断的参考阈值。

推荐使用Ca=1nF的值,并且D1推荐使用快速二极管,如1U4007(1200V或1700V IGBT用2个二极管)。

在响应时间内,Vce检测电路不起作用。响应时间是指从功率半导体开通后直至驱动器开始检测集电极/漏极电位所经过的时间(如图8所示)。

在导通状态下经过响应时间后再检查Vce,以判断短路或过流状况。如果此电压高于预设的阈值Vth,则驱动器判断为短路或过流,关闭对应的IGBT,并立即将故障信号发送到相应的SOx输出端。该IGBT一直保持关断状态(截止),且管脚SOx一直指示故障,直到阻断时间结束。

请注意,只有Vce检测到故障(短路或过流)的通道才会关断并阻断,直到阻断时间结束。

www.IGBT-Driver.com 第 15 页

设置阻断时间

在副方出现故障时(短路或过流、电源欠压、外部故障输入端收到故障信号),故障信号会马上送到原方,并在对应的输出SOx管脚上显示出来。在阻断时间内,对应的通道被阻断(请参阅对应的驱动器数据手册,以了解时间参数的信息)。阻断时间结束之后,驱动器通道将自动复位,对应SOx输出端的故障消失。

请注意,另一个通道(未发生故障的通道)不会关断,对应的SOx输出端也不会产生故障。

参考文献

- /1/ "Smart Power Chip Tuning", Bodo's Power Systems, May 2007
- '2/ "Description and Application Manual for SCALE Drivers", CONCEPT
- /3/ Data sheet SCALE-2 driver core 2SD300C17, CONCEPT
- 注: 这些文档可从以下网站获得: www.IGBT-Driver.com/go/papers

www.IGBT-Driver.com 第 16 页

信息源:SCALE-2驱动器数据手册

对于几乎所有的应用需求,CONCEPT都能为功率MOSFET和IGBT提供最齐全的门极驱动器选择。我们的网站是最大的门极驱动电路网站,包含所有数据手册、应用指南和手册、技术信息以及支持部分:www.IGBT-Driver.com

特殊要求:定制SCALE-2驱动器

如果您在我们的交付范围中未找到自己需要的IGBT驱动器,请直接联系CONCEPT或您的CONCEPT销售合作伙伴。CONCEPT在MOSFET和IGBT的智能门极驱动器的研发和生产领域拥有超过25年的经验,并且我们已经有了一大批客户定制的解决方案。

技术支持

CONCEPT为您提供专家级的帮助:

www.IGBT-Driver.com/go/support

质量

为客户提供高质量的产品是CT-Concept Technologie GmbH的核心使命之一。我们的质量管理体系覆盖产品开发、生产直至交付的所有阶段。SCALE-2系列驱动器的生产符合ISO9001;2000质量标准。

法律免责声明

本数据手册对产品做了详细介绍,但不能承诺提供具体的参数。对于产品的交付、性能或适用性,本文不提供任何明示或暗示的担保或保证。

CT-Concept Technologie GmbH保留随时修改技术数据及产品规格,且不提前通知的权利。适用CT-Concept Technologie GmbH的一般交付条款和条件。

www.IGBT-Driver.com 第 17 页

订购信息

适用CT-Concept Technologie GmbH的一般交付条款和条件。

型号 描述

2SD300C17A1 双通道SCALE-2驱动核(PCB厚度: 1.55mm)

产品主页: www.IGBT-Driver.com/qo/2SD300C17

其他产品的信息

对于其他驱动核:

链接: www.IGBT-Driver.com/go/cores

对于其他驱动器、产品文档、评估系统和应用支持

请点击: www.IGBT-Driver.com

生产厂商

CT-Concept Technologie GmbH Power Integrations旗下子公司 Johann-Renfer-Strasse 15 2504 Biel-Bienne Switzerland (瑞士)

电话 +41 - 32 - 344 47 47 传真 +41 - 32 - 344 47 40

电子邮件 <u>Info@IGBT-Driver.com</u> 网站 <u>www.IGBT-Driver.com</u>

中文技术支持:

瑞士CT-Concept Technologie Ltd. 深圳代表处

400电话: +86 - 400 - 0755- 669

技术支持邮件: Support.China@IGBT-Driver.com

© 2009...2014 CT-Concept Technologie GmbH - Switzerland. 我们保留在不作预先通知的情况下作任何技术改动的权利。

版权所有。 2014-03-19 2.1版

www.IGBT-Driver.com 第 18 页